The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice

نویسندگان

  • Hyejin Shin
  • Soyoung Bang
  • Jiyeon Kim
  • Jin Hyun Jun
  • Haengseok Song
  • Hyunjung Jade Lim
چکیده

Dormant blastocysts during delayed implantation undergo autophagic activation, which is an adaptive response to prolonged survival in utero during less favorable environment. We observed that multivesicular bodies (MVBs) accumulate in the trophectoderm of dormant blastocysts upon activation for implantation. Since autophagosomes are shown to fuse with MVBs and efficient autophagic degradation requires functional MVBs, we examined if MVB formation in activated blastocysts are associated with protracted autophagic state during dormancy. We show here that autophagic activation during dormancy is one precondition for MVB formation in activated blastocysts. Furthermore, the blockade of FGF signaling with PD173074 partially interferes with MVB formation in these blastocysts, suggesting the involvement of FGFR signaling in this process. We believe that MVB formation in activated blastocysts after dormancy is a potential mechanism of clearing subcellular debris accumulated during prolonged autophagy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...

متن کامل

Cellular Biology FRS2 -Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity

Rationale: Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Objective: To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. Methods and Results: Using mice with tissue-specific ablation of FGF receptors ...

متن کامل

FRS2α-mediated FGF signals suppress premature differentiation of cardiac stem cells through regulating autophagy activity.

RATIONALE Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. OBJECTIVE To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. METHODS AND RESULTS Using mice with tissue-specific ablation of FGF receptors...

متن کامل

Original Research FRS2 -Mediated FGF Signals Suppress Premature Differentiation of Cardiac Stem Cells Through Regulating Autophagy Activity

Rationale: Although the fibroblast growth factor (FGF) signaling axis plays important roles in heart development, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Objective: To investigate the mechanism by which FGF signaling regulates cardiac progenitor cell differentiation. Methods and Results: Using mice with tissue-specific ablation of FGF receptors ...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017